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Martel et al. (1998) have shown that interior damping may be comparable with
boundary-layer damping for surface waves in small cylinders and that its incorpo-
ration yields predictions in agreement with the experimental results of Henderson
& Miles (1994) for non-axisymmetric waves on a clean surface with a fixed con-
tact line. In the present note, Henderson & Miles’s boundary-layer calculation is
supplemented by a calculation of interior damping based on Lamb’s dissipation
integral for an irrotational flow. The analysis, which omits second-order boundary-
layer effects, is simpler than that of Martel et al. (which includes these effects and
is based on an expansion in an inverse Reynolds number), but yields results of
comparable accuracy within the parametric domain of the experiments. The cor-
responding calculations for a fully contaminated (inextensible) surface reduce the
discrepancy between calculation and experiment but, in contrast to the results for
a clean surface, leave a significant residual discrepancy. An unexplained discrep-
ancy also remains for axisymmetric waves on either a clean or a contaminated
surface.

Case & Parkinson (1957) and Martel, Nicolás & Vega (1998) have remarked that,
although the contributions of boundary-layer and interior damping of surface waves
in a cylinder of lateral scale a are proportional to lν/a and (lν/a)

2, respectively, where

lν ≡ (2ν/ω)1/2 � a (1)

is the viscous length (ν = kinematic viscosity, ω = angular frequency), these contri-
butions may be of comparable magnitude. In particular, Martel et al. have shown
that the incorporation of interior damping resolves the discrepancy between Hender-
son & Miles’s (1994, hereinafter referred to as HM) boundary-layer approximation
to, and measurements of, the damping of non-axisymmetric waves (but a significant
discrepancy remains for the dominant axisymmetric mode) in a circular cylinder with
a fixed contact line. Martel et al. develop the solution of the boundary-value problem
in powers of a parameter C1/2, which is proportional to lν/a. Their solution com-
prises the O(1) inviscid solution, the O(C1/2) boundary-layer contribution, and O(C)
contributions to the total damping from both interior dissipation and the boundary
layers.

A simpler, although somewhat less accurate (see below), procedure for the cal-
culation of the damping for lν � a is to use the inviscid solution to evaluate the
dominant (for lν/a ↓ 0) terms in the boundary-layer and interior-dissipation integrals.
The resulting omission of the O(C) boundary-layer term would be inconsistent with
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the retention of the O(C) interior damping if these two terms had equal standing
in an asymptotic expansion, but, in our view, they may be regarded as physically
independent at the present level of approximation; indeed, it appears to us that
a major contribution of Martel et al.’s paper is to establish that the O(C) inte-
rior damping may be important even though the O(C) boundary-layer damping is
negligible.

Against this background, we have supplemented our boundary-layer-dissipation-
rate integral (HM, § 3) for a circular cylinder of radius a and depth d with Lamb’s
(1932, § 329(13)) integral

D = −µ
∫∫

∂n(∇φ)2dS (2)

for the dissipation rate for an irrotational fluid motion in a fluid of boundary S , which,
in general, comprises both rigid and free-surface parts (µ ≡ ρν is the viscosity, φ is the
velocity potential, and n is the inwardly directed normal to S). The integrand in (2)
vanishes on the bottom (z = −d, where ∂φ/∂n = ∂φ/∂z = 0), which therefore makes
no contribution to D. The lateral boundary (r = a, where ∂φ/∂n = −∂φ/∂r = 0)
contributes†

Dc

µ
=

∫∫
∂r

(
1

r2
φ2
θ

)
rdrdθ = − 2

a2

∫∫
(φ2

θ)r=adθ dz . (3)

The free surface (z ' 0, where ∂φ/∂n = −∂φ/∂z) contributes

DS

µ
=

∫∫
∂z

(
φ2
r +

1

r2
φ2
θ + φ2

z

)
rdrdθ (4a)

= 4

∫∫
(φzφzz)z=0 rdrdθ, (4b)

where (4 b) follows from (4 a) through Laplace’s equation for φ, Green’s theorem, and
the boundary condition ∂φ/∂r = 0 at the lateral boundary.

We pose the velocity potential for free oscillations in the form (HM, (2.4))

φ = φn(t)Rn(r) cos sθ
cosh kn(z + d)

cosh knd
, (5)

where

Rn(r) =
Js(knr)

Js(kna)
, J ′s(κn) = 0, κn ≡ kna, (6a, b)

s is the azimuthal wavenumber, Js is a Bessel function, and, here and subsequently,
repeated indices are summed over the complete, orthogonal set {Rn, kn} except where
the index occurs once but is not repeated on one side of an equation. Note that Rn
and kn depend on s and that {1, 0} is a non-trivial member of {Rn, kn} if and only if

† The damping rate Dc is associated with the curvature (hence the subscript c) of the lateral
boundary and would vanish for a plane wall. The present Dc and DS are proportional to the first
and second integrals on the right-hand side of Martel et al.’s (2.29 a). We had omitted Dc in an
earlier reduction of (2) and are indebted to Dr Vega for pointing out our error. Case & Parkinson
(1956) appear to have made a similar error in reducing their (31) to their (34). The numerical error
in omitting Dc in the calculation of interior dissipation is less than 1

2
% for all modes considered

here.
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s = 0. Substituting (5) into (3) and (4 b), we obtain

Dc

µ
= −2πs2

a

(
κmTm − κnTn
κ2
m − κ2

n

)
φmφn, Tn ≡ tanh knd, (7a, b)

and
DS

µ
=

2π

a
(1 + δ0s)κn(κ

2
n − s2)Tnφ2

n, (8)

where δ0s is the Kronecker delta. The corresponding inviscid approximation to the
total energy (on the assumption of equal mean kinetic and potential energies for small
oscillations) of the fluid motion is given by

E

ρ
=

∫∫
(φφz)z=0 rdrdθ (9a)

= 1
2
πa(1 + δ0s)κ

−1
n (κ2

n − s2)Tnφ2
n. (9b)

The mean values of D and E for a free oscillation of frequency ω are obtained
by regarding φ as a complex amplitude of the carrier exp(iωt) and replacing φ2

n by
1
2
|φn|2 and φmφn by 1

4
(φmφ̄n + φ̄mφn), where φ̄n is the complex conjugate of φn. The

corresponding interior-damping ratio for deep water (Tn ' 1) is

δi =
Dc + DS

2ωE
=

(
lν

a

)2 [
κn(κ

2
n − s2)|φn|2 − s2(κm + κn)

−1φmφ̄n

κ−1
l (κ2

l − s2)|φl |2

]
, (10)

which must be added to the boundary-layer-damping ratio (HM, (3.10))

δw =
1

2

(
lν

a

)[
(κmκn + s2)(κm + κn)

−1φmφ̄n

κ−1
l (κ2

` − s2)|φ`|2

]
. (11)

The corresponding ratio of interior/wall (subscripts i/w) damping is

δi

δw
=

2lν
a

[
κ`(κ

2
` − s2)|φ`|2 − s2(κm + κn)

−1φmφ̄n

(κmκn + s2)(κm + κn)−1φmφ̄n

]
(12a)

' 2lν
a

[
κl(κ

2
l − s2)|φl |2

(κmκn + s2)(κm + κn)−1φmφ̄n

]
, (12b)

where (12 b) follows from (12 a) on the neglect of Dc.
Results for our clean-surface (HM, § 5.1) experiments are listed in table 1, confirming

Martel et al.’s conclusion that the interior damping is significant for all modes
considered and dominates the calculated wall damping for the (0,1) and (1,1) modes.
Moreover, its inclusion essentially resolves the discrepancy between prediction and
measurement except for the (0,1) mode. (We have listed the experimental/calculated
damping ratio to two decimals in order to compare with Martel et al., but only one
decimal is justified by the experimental accuracy.) Our approximation to the damping
is consistently 2–3% smaller than that of Martel et al., perhaps because of our
neglect of second-order boundary-layer effects, but the difference is small compared
with the contribution of interior damping. The viscous-corrected natural frequencies,
f(3), now are slightly smaller than those listed in column seven of HM, table 1, but
the agreement between predicted and measured values (see below for (0,1) mode)
remains within the experimental error.

We also have corrected an error in our calculation of the natural frequency of the
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Calculations

Measurements f f δ(meas.)/δ(calc.)

s n κ f ∆ (2.17) (viscous) ∆ δi/δw HM Martel et al.

1 0 1.841 4.65 1.4 4.68 4.66 1.34 (1.36) 0.19 1.05 (1.06) 1.02
2 0 3.054 6.32 1.8 6.35 6.33 1.70 0.37 1.06 1.03
0 1 3.832 6.84 1.2 6.85 6.84 0.92 (0.93) 1.64 (1.63) 1.30 (1.29) 1.26
3 0 4.201 7.80 2.2 7.84 7.81 2.04 0.59 1.08 1.04
4 0 5.318 9.26 2.4 9.29 9.27 2.39 0.83 1.01 0.97
1 1 5.331 8.57 1.5 8.60 8.59 1.43 2.01 1.05 1.03

Table 1. Measured and predicted frequencies and damping rates (non-dimensionalized so that
∆ = 4aδ/lν , δ = δi + δw), the ratios of interior and boundary-layer damping, and the ratios of
measured and predicted damping rates for modes with s nodal diameters and n nodal circles on
HPLC water for a pinned contact line and surface cleaned as described in HM, § 5.1. Here, f(2.17)
is calculated from HM, (2.17), and f(viscous) = f(2.17)− (γ/2π), where γ is the measured damping
rate minus the calculated (theoretical) interior damping. The parenthetic numbers allow for finite
depth, which proves to be marginally significant (within the present accuracy) only for the (1,0)
and (0,1) modes. Martel et al.’s results allow for finite depth and incorporate the second-order
boundary-layer correction.

Calculations (T = 62)

Measurements f f

s n κ f ∆ (2.17) (viscous) ∆ δ(meas.)/δ(calc.)

1 0 1.841 4.63 5.8 4.66 4.60 3.39 1.7
2 0 3.054 6.19 7.7 6.30 6.21 5.15 1.5
0 1 3.832 6.68 7.2 6.78 6.69 5.02 1.4
3 0 4.201 7.62 8.1 7.73 7.63 6.80 1.2
4 0 5.318 8.96 9.4 9.12 8.99 8.42 1.1
1 1 5.331 8.37 8.9 8.45 8.33 7.09 1.3

Table 2. Measured and predicted frequencies and damping rates (non-dimensionalized so that
∆ = 4aδ/lν , δ = δi + δw) and the ratios of measured and predicted damping rates for modes
with s nodal diameters and n nodal circles on filtered, distilled water for a pinned contact line
and surface contaminated as described in HM, § 5.2. Here, f(2.17) is calculated from HM, (2.17),
and f(viscous) = f(2.17) − (γ/2π), where γ is the measured damping rate minus the calculated
(theoretical) interior damping.

(0,1) mode, which should be f01 = 6.852 Hz (in place of 6.753 Hz). Viscous correction
reduces this to 6.84 Hz, which agrees with our measured value of 6.84 Hz.

Results for our contaminated-surface (HM, § 5.2) experiments are listed in table 2.
The unexplained residual damping in these results (in contrast to the non-axisymmetric,
clean-surface results) is significant within the experimental error.
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